0=12x^2-48x+20

Simple and best practice solution for 0=12x^2-48x+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=12x^2-48x+20 equation:


Simplifying
0 = 12x2 + -48x + 20

Reorder the terms:
0 = 20 + -48x + 12x2

Solving
0 = 20 + -48x + 12x2

Solving for variable 'x'.

Combine like terms: 0 + -20 = -20
-20 + 48x + -12x2 = 20 + -48x + 12x2 + -20 + 48x + -12x2

Reorder the terms:
-20 + 48x + -12x2 = 20 + -20 + -48x + 48x + 12x2 + -12x2

Combine like terms: 20 + -20 = 0
-20 + 48x + -12x2 = 0 + -48x + 48x + 12x2 + -12x2
-20 + 48x + -12x2 = -48x + 48x + 12x2 + -12x2

Combine like terms: -48x + 48x = 0
-20 + 48x + -12x2 = 0 + 12x2 + -12x2
-20 + 48x + -12x2 = 12x2 + -12x2

Combine like terms: 12x2 + -12x2 = 0
-20 + 48x + -12x2 = 0

Factor out the Greatest Common Factor (GCF), '4'.
4(-5 + 12x + -3x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(-5 + 12x + -3x2)' equal to zero and attempt to solve: Simplifying -5 + 12x + -3x2 = 0 Solving -5 + 12x + -3x2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. 1.666666667 + -4x + x2 = 0 Move the constant term to the right: Add '-1.666666667' to each side of the equation. 1.666666667 + -4x + -1.666666667 + x2 = 0 + -1.666666667 Reorder the terms: 1.666666667 + -1.666666667 + -4x + x2 = 0 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + -4x + x2 = 0 + -1.666666667 -4x + x2 = 0 + -1.666666667 Combine like terms: 0 + -1.666666667 = -1.666666667 -4x + x2 = -1.666666667 The x term is -4x. Take half its coefficient (-2). Square it (4) and add it to both sides. Add '4' to each side of the equation. -4x + 4 + x2 = -1.666666667 + 4 Reorder the terms: 4 + -4x + x2 = -1.666666667 + 4 Combine like terms: -1.666666667 + 4 = 2.333333333 4 + -4x + x2 = 2.333333333 Factor a perfect square on the left side: (x + -2)(x + -2) = 2.333333333 Calculate the square root of the right side: 1.527525232 Break this problem into two subproblems by setting (x + -2) equal to 1.527525232 and -1.527525232.

Subproblem 1

x + -2 = 1.527525232 Simplifying x + -2 = 1.527525232 Reorder the terms: -2 + x = 1.527525232 Solving -2 + x = 1.527525232 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + x = 1.527525232 + 2 Combine like terms: -2 + 2 = 0 0 + x = 1.527525232 + 2 x = 1.527525232 + 2 Combine like terms: 1.527525232 + 2 = 3.527525232 x = 3.527525232 Simplifying x = 3.527525232

Subproblem 2

x + -2 = -1.527525232 Simplifying x + -2 = -1.527525232 Reorder the terms: -2 + x = -1.527525232 Solving -2 + x = -1.527525232 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + x = -1.527525232 + 2 Combine like terms: -2 + 2 = 0 0 + x = -1.527525232 + 2 x = -1.527525232 + 2 Combine like terms: -1.527525232 + 2 = 0.472474768 x = 0.472474768 Simplifying x = 0.472474768

Solution

The solution to the problem is based on the solutions from the subproblems. x = {3.527525232, 0.472474768}

Solution

x = {3.527525232, 0.472474768}

See similar equations:

| 20s-41=199 | | -3x(-2-x)=27 | | x=6y^3+9y^2 | | 6p-32=4 | | 10m+7=92 | | P^2+4p-22=0 | | 250-170=0 | | 4(p-1)=-19 | | T-10=25 | | 15o-10=-160 | | 250-170= | | 3/8n-2=28 | | X^2-380x+15000=0 | | 42=9+0x | | 17i-33=18 | | 42=6+0x | | 9=1.4*1.97x | | -7/10t=1/6 | | 8h+2=74 | | .5/x=9/36 | | 12.7=y+3.4 | | 50/80=X/100 | | 7=9(a-3/4)-13 | | t^2-8t+20=0 | | 5-2X+4=15 | | 1(4x+3)=4(2x+5) | | -14+(-12)=p | | -15x-12=-87 | | (x^3+27)(x^3-27)=0 | | 10x(5z+4x)= | | 10e-2=18 | | 3(5x+9)=9 |

Equations solver categories